Vampir Introduction

Trace-based Performance Analysis

Thomas llsche, ORNL

May 17, 2011

U.S. DEPARTMENT OF

) ! ENERGY ¥ OAK RIDGE NATIONAL LLABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Vampir — Tool Suite
* Help you with optimizing your parallel application
* Provides a view into the execution of the application

* More detailed view than profiling
(temporal and spatial dependencies etc.)

* Vampir does not fix your code
Vampir does not optimize your code
You are the expert — you draw the conclusions

Motivation

* Why performance analysis?
— Efficient usage of limited resources
— Increase scalability for bigger simulations

* Profiling and Tracing
— Include optimization as a phase in your development
— Use tools instead of printf-solutions

Profiling and Tracing

* Instrumentation
— Detect events (points of interest) during execution
— Handle that information in a measurement library
* Profiling
— Aggregates the available information
— Count the time spent in a function and sum it up
* Trace recording

— Save the individual event with a timestamp and
processes/thread information

Profiling and Tracing

* Tracing advantages
— Preserve the temporal and spatial relationships of events
— Profiles can be calculated from a trace but not vice versa

* Tracing disadvantages
— Traces can become very large
— More perturbation than just profiling

— Instrumentation and tracing is more complex
e Largerl/O
* Event buffering

* Clock synchronization issues

Common Event Types

* All Types have timestamp and process information

* Enter and leave of a function/region
— Region ID

* Send and receive of messages (MPI, GPU<->Host)
— Sender, receiver, size, tag, communicator

 Collective communication (MPI)
— Root, communicator, (size)

* Performance counter values (PAPI)
— Counter ID, value

Vampir — Tool Suite

* The Vampir Performance Analysis Suite consists of
— VampirTrace: Collect trace data
— Vampir: The Graphical User Interface for trace analysis
— VampirServer: A parallel performance analysis engine

\ 1.0 ms rlf

Vv 3 .
. I\/IuIt| Core . Vampir Trace Iamplr - O
. Program Trace File F .

CPU (OTF)

-

__/

r
rr‘r‘r‘r‘ CICICICICIC
r r- r- r Trace

. Many-Core - |Bundle

r
r Program | .
¥@@@@

~
Vampir > X\ >[VampirServer }

VampirTrace

* VampirTrace consists of
— Trace library
— Compiler wrapper
— Tools to process trace files

* VampirTrace collects timestamped events
— No aggregation of data (by default)
— All information is preserved for analysis
— Trace files can become large and hard to handle

— VampirTrace uses two file handles / process, which is a
difficult for LUSTRE to handle on large applications

* Work in progress to fix this

VampirTrace

* VampirTrace supports the tracing of
— Function calls, using

* Compiler instrumentation
* Manual instrumentation (regions)
* Binary instrumentation (dyninst)
* Wrapping library calls
— MPI
* Point to point
* Collectives
* 1/0
— Hardware Counters (PAPI)
— CUDA events

* Memory copy

e Kernel execution

Vampir
* GUI to analyze trace files (OTF)
* Main concept: Timeline

* GUI is QT based — available on Linux, Mac, Windows

W () Vampir - [Trace View - localhost:30045:/ftmp/p nmg.4320/tra 7543 /usam otf]

% Hle Edit chart Alter Window Help
& i 705 1055
Exrkee3d [y hil} | E T W ||
Timeline Function Summa

72s 74s 765 78s 80s 82s 84s 86s 88s 90's 92s 945 96s 98's 100 s 102's 104 s All Processes, Accumulated Exclusive Time per Function

Process 0
Process 85
Process 174
Process 262
Process 351
Process 440
Process 528
Process 617
Process 706
Process 794
Process 883
Process 972
Proce.
Proce..,
Proce..
Proce..,
Proce..
Proce.

Scheduler calculateSendsizes
reaction_rreact
reaction_rkineticmineral
“utilty_ludemp
Schedule::beginCommunication
MPI_Isend

Schedule: processincomingMessages
Proce. _reaction_rsolve

Proce. : | e : 51% | LevelSolver:CellLevelsmoother::solve
Proce. b Efigle ikl : : e 0.732% [|MPLIrecy

proce. ;) iR] EHEE 0.582% || FAC: CellFACPraconditioner residual_calculation @

Proce... i AR alil : 0.477% | Schedules:communicate
Proce. 1 ; i {

Proce. g i : 3l) il i Function Legend
Proce.. A 3 a i Application

Proce. FLOW
Proce.., - : g : | FLOW_SETUP
Proce.. il 2 : EE e [MP

Proce... A | i i ™ MPI_Barrier
Proce.. i B 4 I i [7 RTAUXVARCOMPUTE
Proce. i flg P i : g i SOLVE

Proce... il ol ilEretes B TRANSFER

Proce., e “F b + i i TRANSPORT
Proce.., TRANSPORT_REACT
Proce. ;i 1 e . TRANSPORT_SETUP
Proce. ; 35t 2 L . 5 W UPDATESOLOTION
Proce. | : : :

proce. 8 :] Communication Matrix View
Froce..] it] AR e Number of Messages

Proce. q

Proce.
Proce.
Proce.
Proce.
Proce..,
Proce.
Proce..,

rrocess u
Process 271
_ _ _ Process 543
Process i : : [2) Processe1s ¥
- = Process 1087
Process 1359
Process 1631
Process 1903
Process 2160
Process 2430
Process 2702
Process 2974
Process 3246
Process 3518
Process 3790
Process 4062

@ 1. flow 2. transport + reactions
One Timestep 3. update solution analysts Engine Wurk\uad‘E

VampirServer

* Parallel analysis engine for Vampir
— MPI
— OpenMP

* Scales to > 10,000 analysis processes

* Loads the entire uncompressed trace into memory

Finding Performance Bottlenecks

* Inefficient Communication patterns
* Load imbalance / serial parts of the application

* Memory bound computation
— Inefficient cache usage

— TLB misses
— Use HW counters (PAPI) to detect

* /0 bottlenecks

* Most time consuming function

Effects due to Tracing

* |/O overhead (flush)

— Visibly marked in the trace

— ‘Long’ time for I/O

— Ideally only once at the end (invisible) or during barriers
— Avoid by applying runtime filters

* Measurement overhead
— Overhead on function calls
— Invisible
— Avoid instrumenting tiny frequently called functions
— Compare total runtime to get an upper bound on overhead

Conclusion

* Performance analysis is very important in HPC
e Use the right tool for your needs
e Use tracing with caution

* Contact me for questions, problems or feature wishes

Thank you

* Contact:

— Thomas llsche, ORNL
5700 B206
ttl@ornl.gov (Thomas.Ilsche@zih.tu-dresden.de)
865-241-6293

mailto:tt1@ornl.gov

